Ocean Predictions and uncertainty estimates

Nadia Pinardi University of Bologna and Istituto Nazionale di Geofisica e Vulcanologia

SUMMARY

- 1. The prediction/forecasting problem concepts and historical notes
- 2. Ocean forecasting at work: the Mediterranean Sea
 - 3. The uncertainty in winds projects on the ocean mesoscales

What is it that I really seek? Whither am I steering? I could not free myself from the thought that "There is after all but one problem worth attacking, viz, the precalculation of future conditions."

> V. Bjerknes, 'Meteorology as an exact science', Monthly Weather Review, 1914

Napier, 1614, Mirifici logarithmorum canonis descriptio

1°		
	MIRIFICI	
	Logarithmorum <i>Cauonis defcriptio</i> , Ejufque ufus, in utraque	C JA
6.0	Trigonometria ; ut etiam in ouni Logiftica Mathematica, Amplufimi, Facilimi, & conductioni enterno.	PS
	Authore ac Inventore, IOANNE NE PERO, Barone MrchiAonii, dr. Scott.	
	EDIR BURGI, Exofficină ANDREÆHART Bėliopile, cl., pc. x1v,	
425		

Logarith Differen. L	garith :	Sines	
o Infinite. Infinite.	.0	1000000.0	ĺ
1 31425678142568	.1	0.0000001	
2 74494197449421	.2	999999 8	
3 7043952 7043956	-4	999999.6	
4 6756275 6756274	.7	999999.3	ļ
4 6533131 6533130	1.1	999998 9	ŀ
5 63508106250808	1.6	979998.6	k
61966596196657	2.2	999998.0	ś
7 6063128 6063126	1.8	999997.4	5
8 5945345 5945342	3.5	999996.7	ŝ
\$ \$8399865839814	4.3	999995 9	5
5744676 5744671	5.2	999995.0	4
\$657665 5557658	6.2	999994.0	4
1 55776225577615	7.3	999992.8	4
1 55 35145503506	8.4	999991.7	÷
3 54345225434513	9.6	9999990.0	4
4 5369984 5369973	10 9	999989.2	4
5 5309360 1309:48	12.3	999987.8	4
5252202 (252188	13.8	999986.3	4
7 5198136 5198120	15.4	999984.7	4
8 5146843 5146836	17.0	999983.1	4
50980545098045	18.7	999981 3	21
9 50515345011514	20.5	999979."	38
0 5007083 5007060	22.4	999977.6	37
1 49645244964499	34.4	999975.6	20
2 49237034923676	26.5	999973.6	39
53 4884483 4884454	28.7	999971.4	34
4 4846743 4846712	309	999969.2	2
4810376 4810343	33.2	999966.8	22
6 4775286 4775250	35.	999964.1	31
4741385 4741347	38.1	999961.9	30

mi Sines	Logarith Differen.	Logarith.	Sines_
30 8736	4741385 4741347	38.1	999961.93
31 9017	4700590 4708555	40.7	999959.32
32 9308	4070040 4676805	43-4	999950.6
22 9599	4646077 4646031	46.1	999953-9 2
24 9890	4616225 4616170	48.9	999951.12
18101 35	4587239 458718	51.8	999948.22
2610472	4559009455901	54.8	999945-22
37 10763	453 1671 453 161	57.9	999942.1 2
3811054	4505004 450494	61.1	999938.92
2011344	4479030 +47896	64.4	999935.72
4011635	4453713 445364	67.7	999933.3 2
41 11926	4419012 4428950	71.1	999918.91
43 12317	4404925 4404850	74.6	999925 41
43 12508	4381396 4381318	78.2	999921.81
44 12799	4358408 4358324	81.9	999918.1
4512090	43359364335850	85.7	900914.2
4613380	43 13958 431386	89.6	12,0199.99
47 13671	4292453 429236	93.5	999906.51
18 12962	4271401427120	97.5	000001 01
49 14252	4250783 425068	101.6	000808.4
5014544	4230583 423047	105.8	999894.2
114825	4210781421067	TIO.I	10008000
12 15126	4191264419125	II4-S	008866
5315416	4172217417214	118.9	999881.1
1411707	AT (261 AT (250	112.4	1000006
\$515908	4125270412515	1 128.0	999878.9
\$616289	4117262411712	122.7	0008673
17 16180	4100664410063	1 127.6	000860 0
\$8 16871	4081177/408101	1 142.4	9999002.5
59 17162	4068082 406492	147.3	1000812.7
60 17400	1-19476 101810	1 100	10000

The forecasting/prediction problem definition 1/2

- O Bjerknes (1904, 1914) defined for the first time the 'rational method for weather predictions'
- In opposition to purely empirical and statistical methods, Bjerknes presented his rational version of forecasting based on the laws of mechanics and physics of the atmosphere
- Bjerknes developed a method to "construct the pictures of the future states of the atmosphere from the current state of the atmosphere at a starting point" following the deterministic approach set by Pierre de Laplace in 1820: "We ought to regard the present state of the universe as the effect of its antecedent state and as the cause of the state that is to follow"

The prediction problem definition 2/2

- Two conditions should be fulfilled in order to solve the prediction problem in atmosphere and oceans
 - I- Know the present state of the system as accurately as possible
 - II- Know the laws of physics that regulate the time evolution of the basic field state variables, i.e. have predictive models for atmosphere and oceans
- In order to solve the prediction problem the scientific approach should consider 3 partial problems
 - Comp.1: The observational network
 - Comp.2: The diagnostic and analysis tools/algorithms
 - Comp.3: The prognostic component

The first successful forecast: Princeton 1950

The first ocean forecast: Harvard and Monterey 1983

The key choice: 1) synoptic data for initial conditions 2) baroclinic multilevel Quasigeostrophic model

SEPTEMBER 1986

ROBINSON, CARTON, PINARDI AND MOOERS

The first ocean forecast: Harvard and Monterey 1983

Initial condition

Final forecast

lidation

5534

Ø

SEPTEMBER 1986

ROBINSON, CARTON, PINARDI AND MOOERS

1565

In the 60-80's Lorenz set the theoretical basis for the definition of the predictability problem

 Lorenz (1969) defined the atmospheric predictability problem as: the time for which two analogue atmospheric states will double the initial difference among themselves.

Ocean predictions : the operational start

- **)** 1992-2000:
 - Satellite altimetry started to give 10 days repeated mapping of the sea level with errors < 5 cm
 - The ship of opportunity profiles became available in near real time,
 - SST from satellite with accuracy > 0.5 deg C
 - Numerical large scale models started to resolve mesoscales and became more skillful to reproduce ocean processes
 - Atmospheric forcing became available at 50 km resolution
 - Data assimilation schemes started to be developed to assimilate both in situ and satellite sea level
- At the same time, in the Mediterranean a program of ocean predictions started to organize Bjerknes three components at the basin scales
- 2003: ARGO program started also in the Med

The near real time observing system components

Multisatellite along track sea level

Multi-sensor daily OI SST

coverage for the 2008-2011 period

The diagnostic component today

Method is variational, so-called 3DVAR (Dobricic and Pinardi, 2008) A cost function, linearized around the background state,

in the instant of the

$$J = \frac{1}{2} \delta \mathbf{x}^T \mathbf{B}^{-1} \delta \mathbf{x} + \frac{1}{2} [\mathbf{H}(\delta \mathbf{x}) - \mathbf{d})]^T \mathbf{R}^{-1} [\mathbf{H}(\delta \mathbf{x}) - \mathbf{d})]$$
$$\delta \mathbf{x} = \mathbf{x} - \mathbf{x}_b \qquad \mathbf{d} = [H(\mathbf{x}_b) - \mathbf{y}]$$

Preconditioning is done using a control vector v defined by:

$$\mathbf{v} = \mathbf{V}^+ \boldsymbol{\delta} \mathbf{x} \qquad \mathbf{B} = \mathbf{V} \mathbf{V}^T$$

V is modelled as a sequence of linear operators: $\mathbf{V} = \mathbf{V}_D \mathbf{V}_{uv} \mathbf{V}_{\eta} \mathbf{V}_H \mathbf{V}_V$.

- V_V Vertical EOFs. V_{uv} Diagnose u and v.
- \mathbf{V}_{H} Horizontal covariances.

$$\mathbf{V}_\eta~$$
 - Barotropic model for eta

 \mathbf{V}_{D} -Divergence damping filter. ¹¹

The ocean numerical prediction models

A) <u>Hydrodynamics</u> (MFS) <u>1/16 deg resolution,</u> 72 levels

<u>B) Waves</u> <u>1/16 degree resolution</u> <u>Wind drag coefficient for</u> <u>hydrodynamics</u>

C) Pelagic Biochemistry 1/16 deg resolution

How did the error decrease in the last 10 years?

How did the error decrease in the last 10 years?

Predictability time for T and S

Forecast skill: the effect of atmospheric forcing errors

What is the uncertainty in the winds ? (Milliff et al., 2011)

Posterior distributions of winds from a Bayesian Hierarchical Model: BHM-SVW realizations (Milliff et al., 2011)

The BHM-SVW Ocean Ensemble Forecast method (Pinardi et al., 2011)

Uncertainty in the ocean predictions due to uncertainty in the winds

In conclusions

- The Bjerknes method for atmospheric forecasting has been implemented operationally in the ocean in the past 15 years
- O For the Mediterranean Sea uncertainty (rms) is connected to, in order of priority:
 - 1. Numerical ocean model improvements
 - 2. Atmospheric forcing uncertainties, in particular winds
- Predictability time scale for the ocean is 6-8 days
- Atmospheric uncertainty drives ocean forecast uncertainty with values comparable to observational errors